Light-induced retinal vascular damage by Pd-porphyrin luminescent oxygen probes.
نویسندگان
چکیده
PURPOSE The phosphorescence lifetime of certain metalloporphyrins dissolved in a physiological medium provides an optical signature for local oxygen concentration (pO(2)). This effect is used for measuring physiological pO(2) levels in various tissues. However, the phosphorescence quenching of certain metalloporphyrin triplet states by oxygen also creates singlet oxygen, which is highly reactive and capable of inducing tissue damage. In the current study, the Pd-meso-tetra(4-carboxyphenyl) porphyrin dye (PdTCPP) was simultaneously used as an oxygen sensor and a photosensitizer. Phototoxicity was assessed in the eye fundus and correlated with tissue oxygenation, drug-light dose, and severity of tissue damage. METHODS The kinetics of photochemical oxygen depletion during PdTCPP excitation was measured in vivo on the optic disc of piglets by phosphorescence lifetime imaging. Blood-retinal barrier breakdown and tissue damage were assessed by confocal and electron microscopy. RESULTS For a retinal irradiance of 5 mW/cm(2) at 532 nm and an injected PdTCPP dose of 20 mg/kg, the mean phosphorescence lifetime measured at the optic disc increased from 100 to 600 micros within 8 minutes of continuous illumination. This corresponds to a decrease of pO(2) from 25 to 0 mm Hg, induced by a light dose of only 2.4 J/cm(2). An exposure time of 6 minutes (1.8 J/cm(2)) generated an increase in phosphorescence lifetime from 100 to 400 micros, corresponding to a decrease in pO(2) from 25 to 4 mm Hg. This caused edema in all retinal layers, whereas irradiation of 2 minutes (0.6 J/cm(2)) damaged blood vessels and induced edema in the inner nuclear layer only. Heavy redistribution of occludin occurred after a 30-minute exposure time (9 J/cm(2)). CONCLUSIONS PdTCPP is potentially phototoxic under certain experimental conditions and can induce damage in peripapillary retina and optic nerve head after light exposure. The severity of tissue damage correlates with the phosphorescence measurements.
منابع مشابه
Improvement of Retinal Vascular Injury in Diabetic Rats by Statins Is Associated With the Inhibition of Mitochondrial Reactive Oxygen Species Pathway Mediated by Peroxisome Proliferator–Activated Receptor γ Coactivator 1α
OBJECTIVE Mitochondrial reactive oxygen species (ROS) plays a key role in diabetic retinopathy (DR) pathogenesis. However, whether simvastatin decreases diabetes-induced mitochondrial ROS production remains uncertain. The aim of this study was to clarify the beneficial effects and mechanism of action of simvastatin against diabetes-induced retinal vascular damage. RESEARCH DESIGN AND METHODS ...
متن کاملUsing Temperature of IR Sources for Assessing Photochemical and Aphakic Retinal Hazard
Introduction Blue light is a part of the spectrum with the highest energy content, which can reach the retina. The damage that it can cause to the retina is called photochemical or blue-light retinal injury. For the retinal injury assessment of the photochemical and aphakic retinal hazards in the wavelength range of 300-700 nm, use of effective spectral radiance limits (W.m-2.sr-1) seems to be ...
متن کاملSite-directed photoproteolysis of 8-oxoguanine DNA glycosylase 1 (OGG1) by specific porphyrin-protein probe conjugates: a strategy to improve the effectiveness of photodynamic therapy for cancer.
The specific light-induced, non-enzymatic photolysis of mOGG1 by porphyrin-conjugated or rose bengal-conjugated streptavidin and porphyrin-conjugated or rose bengal-conjugated first specific or secondary anti-IgG antibodies is reported. The porphyrin chlorin e6 and rose bengal were conjugated to either streptavidin, rabbit anti-mOGG1 primary specific antibody fractions or goat anti-rabbit IgG s...
متن کاملProtective effects of a dietary carotenoid, astaxanthin, against light-induced retinal damage.
Dietary carotenoids exhibit various biological activities, including antioxidative activity. In particular, astaxanthin, a type of carotenoid, is well known as a powerful antioxidant. We investigated whether astaxanthin would protect against light-induced retinal damage. In an in vivo study, ddY male mice were exposed to white light at 8,000 lux for 3 h to induce retinal damage. Five days after...
متن کاملCompliance of Radiation Dose and Image Quality in a Nigerian Teaching Hospital with the European Guidelines for Pediatric Screen-Film Chest Radiography
Introduction Blue light is a part of the spectrum with the highest energy content, which can reach the retina. The damage that it can cause to the retina is called photochemical or blue-light retinal injury. For the retinal injury assessment of the photochemical and aphakic retinal hazards in the wavelength range of 300-700 nm, use of effective spectral radiance limits (W.m-2.sr-1) seems to be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 46 3 شماره
صفحات -
تاریخ انتشار 2005